Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period
نویسندگان
چکیده
Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267 bp), represented more than 70% of the metabolically active methanogens, showing no significant changes over the transition period; minor T-RFs, likely to represent members of the order Methanomassiliicoccales and with a relative abundance below 5% in total, decreased significantly over the transition period. In accordance with the T-RFLP analysis, the mcrA transcript amplicon sequencing revealed Methanobacteriales to cover 99% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed over the transition period, likely in response to the dramatic changes in physiology and nutritional factors like dry matter intake and feed composition. It should be noted however that for the methanogens, the observed community changes were influenced by the analyzed gene (mcrA or 16S rRNA).
منابع مشابه
Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation
Development of the dairy calf gastrointestinal tract (GIT) and its associated microbiota are essential for survival and milk production, as this community is responsible for converting plant-based feeds into accessible nutrients. However, little is known regarding the establishment of microbes in the calf GIT. Here, we measured fecal-associated bacterial, archaeal, and fungal communities of dai...
متن کاملDiet-Induced Alterations in Total and Metabolically Active Microbes within the Rumen of Dairy Cows
DNA-based techniques are widely used to study microbial populations; however, this approach is not specific to active microbes, because DNA may originate from inactive and/or dead cells. Using cDNA and DNA, respectively, we aimed to discriminate the active microbes from the total microbial community within the rumen of dairy cows fed diets with increasing proportions of corn silage (CS). Nine m...
متن کاملAssociative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows
The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF), protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lac...
متن کاملA study of rumen microbial community of Baluchi lambs fed a high concentrate diet containing conventional ingredients
Baluchi sheep is the dominant fat-tail breed in Iran. We studied the microbial communities in the rumen of four Baluchi lambs fed a high concentrate conventional diet. Using DNA extracted from the rumen samples, we found the partial ribosomal rRNA of bacterial and archaeal were amplified by polymerase chain reaction (PCR). The amplicons were sequenced using 454 Titanium pyrosequencing and the d...
متن کاملA study of rumen microbial community of Baluchi lambs fed a high concentrate diet containing conventional ingredients
Baluchi sheep is the dominant fat-tail breed in Iran. We studied the microbial communities in the rumen of four Baluchi lambs fed a high concentrate conventional diet. Using DNA extracted from the rumen samples, we found the partial ribosomal rRNA of bacterial and archaeal were amplified by polymerase chain reaction (PCR). The amplicons were sequenced using 454 Titanium pyrosequencing and the d...
متن کامل